
Planning-based Security
Testing of Web Applications

Josip	Bozic and	Franz	Wotawa
Graz	University	of	Technology

Institute	for Software	Technology
jbozic@ist.tugraz.at

AST@ICSE,	May	28th,	2018

00

u tugraz.at

Outline

1. Introduction

2. Planning

3. WebTesting

4. Conclusion

Bozic,	Wotawa - Planning-based Security	Testing of Web	Applications

1

Introduction
• Why	security	testing?

– Cyber	security	is	a	global	issue.
– Web	application	vulnerabilities	still	
represent	a	major	challenge.	[1]

– Security	leaks	indicate vulnerability	
against	attacks.

• Requirements:
– Data	confidentiality	
– Secure	authentication
– Secure	communication

Bozic,	Wotawa - Planning-based Security	Testing of Web	Applications

2

Introduction
• Notable	targets:

– The	United	Arab	Emirates	Invest	
Bank

– White	House
– eBay

• Negative	consequences:
– Vulnerable	programs	cause	costs.
– Negatively impacts trust in	
applications,	companies and
people.

Bozic,	Wotawa - Planning-based Security	Testing of Web	Applications

3

Contribution
• Planning-based	approach	for	modeling	
and	security	testing	of	web	applications.

• Automated execution and detection	of	
SQL	injection	(SQLI)	and	reflected	and	
stored	cross-site	scripting (XSS).

• Goal:	Cover standard	exploitation
attempts and uncover	new	ones.

Bozic,	Wotawa - Planning-based Security	Testing of Web	Applications

4

Automated Planning and Scheduling
• Applications:

– Artificial	intelligence	(AI)	in	testing.	[2,3]
– Initially	used	for	intelligent	agents,	
robotics	etc.	[4]

Bozic,	Wotawa - Planning-based Security	Testing of Web	Applications

5

• Characteristics:
– Plan:	Sequence	of	actions	with	pre- and	postconditions.
– Conditions	guide	the	planning	process.	
– Planner: Program	that	provides	a	solution	to	the	problem	
according	to	an	algorithm.	[5,6,7,8]

Planning in	Security	Testing
• Why	planning	?
– Attack:	Sequence	of	actions	that	
lead	to	exploitation.

– Plan:	Blueprint	for	an	attack.
– By	automating	the	test	case	
generation	and	execution,	the	
attacker	is	emulated	in	an	iterative	
manner.

Bozic,	Wotawa - Planning-based Security	Testing of Web	Applications

6

Planning in	Security	Testing
• Every	interaction	between	a	client	
and	a	system	can	be	represented	as	
sequence	of	actions.

• A	test	case	is	a	sequence	of	
interactions	with	the	SUT.

• An	initial	state:	Starting	point	of	the	
attack.

• Final	state:	Condition	where	an	
attack	was	successful.

• Result:	FAIL	or	PASS.	

Bozic,	Wotawa - Planning-based Security	Testing of Web	Applications

7

Planning Model
• No	graphical	model	of	the	SUT.
• Planning	specification	in	the	Planning	
Domain	Definition	Language	(PDDL).

• Data	definitions	in	order	for	the	planner	
to	generate	a	plan.

• Multiple	solutions	for	one	planning	
problem.	

Bozic,	Wotawa - Planning-based Security	Testing of Web	Applications

8

(:objects x)

(:predicates
(inInitial ?x)
(inGotSite ?x)
(inAttackedSQLI ?x)
(inAttackedXSS ?x)
(inFinished ?x))

(:action GetSite
:parameters (?x)
:precondition ()
:effect (inGotSite ?x))

(:action AttackXSSGet
:parameters (?x)
:precondition (and (inGotSite ?x)

(inAttackedSQL ?x)))
:effect (and (inAttackedXSS ?x)

(inFinished ?x)))

9

Bozic,	Wotawa - Planning-based Security	Testing of Web	Applications

(:action AttackXSSPost
:parameters (?x)
:precondition (and (inGotSite ?x)

(inAttackedSQL ?x))
:effect (and (inAttackedXSS ?x)

(inFinished ?x)))

(: action AttackSQLGet
:parameters (?x)
:precondition (inGotSite ?x)
:effect (and (inAttackedSQL ?x)

(inFinished ?x)))

(: action AttackSQLPost
:parameters (?x)
:precondition (and (inGotSite ?x)

(inAttackedXSS ?x))
:effect (and (inAttackedSQL ?x)

(inFinished ?x)))

Planning Model

Planning Model10

Bozic,	Wotawa - Planning-based Security	Testing of Web	Applications

(:init (inInitial x))

(:goal (inFinished x))

0: GetSite(x)
1: AttackSQLGet(x)
2: GetSite(x)
3: AttackSQLPost(x)
4: AttackXSSPost(x)
5: GetSite(x)
6: AttackXSSGet(x)

Problem	description:

Generated	plan:

Planning Model
• Advantages:
– Extendibility.
– Configurability	(e.g.	no	conditions).
– Every	change	in	the	model	results	in	different	plans.
– Model	explosion	is	avoided.
– Follow	execution	traces	that	are	not	given	in	specification	of	
SUT.

• Disadvantages:
– No	possibility	to	interact	with	SUT.
– (Almost)	No	concrete	values.

Bozic,	Wotawa - Planning-based Security	Testing of Web	Applications

11

Planning System
• Automated	planners:
– Planners	usually	return	only	one	plan	
for	a	planning	problem.	(E.g.	[5])

– Java	implementation	of	the	
Graphplan algorithm,	JavaGP.	[8]

– Configurable	number	of	plans.

• Motivation:
– Generate	plans	with	a	broad	
diversity.

– Cause	unintended	behavior,	
eventually	confusing	the	SUT.

12

Bozic,	Wotawa - Planning-based Security	Testing of Web	Applications

Planning System13

Bozic,	Wotawa - Planning-based Security	Testing of Web	Applications

1 GetSite(x), AttackSQLGet(x), AttackXSSGet(x), AttackSQLPost(x)

2 GetSite(x), AttackSQLGet(x), GetSite(x), AttackXSSGet(x),
AttackSQLPost(x)

3 GetSite(x), GetSite(x), AttackSQLGet(x), AttackXSSGet(x),
AttackSQLPost(x), GetSite(x), AttackXSSPost(x)

4 GetSite(x), AttackSQLGet(x), GetSite(x), AttackXSSGet(x), GetSite(x),
AttackSQLPost(x)

5 GetSite(x), AttackSQLGet(x), GetSite(x), AttackXSSGet(x),GetSite(x),
GetSite(x), AttackSQLPost(x), AttackXSSGet(x)

6 GetSite(x), GetSite(x), AttackSQLGet(x), AttackXSSGet(x), GetSite(x),
GetSite(x), AttackSQLPost(x), AttackXSSPost(x)

7 GetSite(x), AttackSQLGet(x), AttackXSSPost(x), GetSite(x),
AttackSQLPost(x)

8 GetSite(x), AttackSQLGet(x), GetSite(x),
AttackXSSPost(x), AttackSQLPost(x),
GetSite(x), AttackXSSPost(x)

Planning for Web	Applications

• PDDL	specification	of	the	client’s	side.
• Checking	the	server’s	response.
• HTTP	methods:	GET,	POST,…

14

Bozic,	Wotawa - Planning-based Security	Testing of Web	Applications

GET /site/login_form.php?username=john
&password=!js123 HTTP/1.1
POST /site/login_form.php HTTP/1.1
Host: w3company.com
username=john&password=!js123

Test	Execution Framework15

Bozic,	Wotawa - Planning-based Security	Testing of Web	Applications

Test	Execution Framework
• Java-based	execution	framework:	Resembles	the	
communication	between	client	and	server.

• HttpClient [9]	for	HTTP
• Parser:	jsoup [10]
• Plan:	Abstract	test	case;	Guidance	of	the	execution.
• Test	sets:	XSS	and	SQLI;	for	concretization.
• Concretization	phase:	During	execution,	concrete	
values	are	assigned	to	the	parameters	of	the	individual	
actions.	

• Implemented	oracles:	PASS |	FAIL.
• Crawler:	Ensures	that	a	SUT	is	tested	completely.

Bozic,	Wotawa - Planning-based Security	Testing of Web	Applications

16

Test	Execution Framework
• Examples:	<script>alert(0)</script>

17

Bozic,	Wotawa - Planning-based Security	Testing of Web	Applications

POST /site/login_form.php HTTP/1.1
Host: w3company.com
username=<script>alert(0)</script>&password=

POST /site/login_form.php HTTP/1.1
Host: w3company.com
username=&password=<script>alert(0)</script>

Test	Execution Framework

Bozic,	Wotawa - Planning-based Security	Testing of Web	Applications

18

GetSite(x)

AttackXSSGet(x)

AttackXSSPost(x)

AttackSQLGet(x)

AttackSQLPost(x)

public static int[] get()
{

httpGet = new HttpGet(address);
HttpResponse response =
httpclient.execute(httpGet);
entityContents =
EntityUtils.toString(response.getEntity());
doc = Jsoup.parse(entityContents);

}

public static boolean attackxss(...)
{

suffix = suffix + Inputs.get(i) + "="
+URLEncoder.encode(avector, "UTF-8");
httpGet = new HttpGet(suffix);
response =
httpclient.execute(httpGet);

}

public static boolean attackxss(...)
{

httpPost = new HttpPost(address);
List <NameValuePair> list = new
ArrayList <NameValuePair>();
list.add(new
BasicNameValuePair(Submit.get(0),
Submit.get(1)));
httpPost.setEntity(new
UrlEncodedFormEntity(list));
response = httpclient.execute(httpPost);

}

…

1.

2.

3.

4.

5.

• Concretization:

Test	Execution Framework
• Concretization:

Bozic,	Wotawa - Planning-based Security	Testing of Web	Applications

19

a1 a2 a3 a4 a5 a6

0: <script>alert(0)</script>
1: <script>alert(document.cookie)</script>">
2:
3: <IFRAME SRC=# onmouseover=
"alert(document.cookie)"></IFRAME>

0: ' OR 1 = 1 --
1: x' or first_name LIKE '%a%'
' OR 1=1 #
2: "a' OR database() LIKE
'%A%';# a' ORDER BY 1;#
3: or @@hostname –
4: ...

Test	Execution Framework20

Bozic,	Wotawa - Planning-based Security	Testing of Web	Applications

/index.php?page=dns-lookup.php
/index.php?page=user-info.php
/index.php?page=login.php
/set-up-database.php
…

TEST EXECUTION
FRAMEWORK

jsoup

URLs

crawler

XSS SQLI

attack
vectors

plans

0:	<script>alert(0)</script>
1:	<script>alert(document.cookie)</script>">	
2:		
3:	<IFRAME	SRC=#	onmouseover=			
"alert(document.cookie)"></IFRAME>

executor

JavaGP

Model
(PDDL)

SUT

oracles

<div class="vulnerable_code_area">
<form name=“login" action="#" method="GET">

<p>
<input type="text" name="name">
<input type="submit" value="Submit">

</p>
</form>
<pre>Hello <script>alert(0)</script></pre>

</div>

verdict:

0: GetSite(x), AttackSQLGet(x), AttackXSSGet(x),
AttackSQLPost(x)
1: GetSite(x), AttackSQLGet(x), GetSite(x), AttackXSSGet(x),
AttackSQLPost(x)
2: GetSite(x), GetSite(x), AttackSQLGet(x), AttackXSSGet(x),
AttackSQLPost(x), GetSite(x), AttackXSSPost(x)
3: ...

http://www.mutillidae.com
http://www.testthissite.com
http://localhost:80/dvwa/

0:	' OR	1	=	1	--
1:	x'	or	first_name LIKE	'%a%'	#	' OR	1=1	#
2:	"a'	OR	database()	LIKE	'%A%';#	a'	ORDER	BY	1;#
3:	or @@hostname –
4:	...

type="text" name="username"
type="password" name="password"
type="submit" name="Login"
type="textarea" name="mtxMessage"

Conclusion/Future	Work
• Planning-based	security	testing	
approach.

• Planning	model	for	XSS	and	SQLI.
• Crawler	support.
• Advantages:	
– Planning	models:	Keep	the	representation	
small	but	achieve	many	test	cases	with	
variety.

– Configurability
• Disadvantages:
– PDDL	knowledge.

21

Bozic,	Wotawa - Planning-based Security	Testing of Web	Applications

Conclusion/Future	Work
• Future:

– Extend	the	planning	model	(i.e.	
incorporate	more	attacks).

– Combine	attacks.	
– Refine	test	oracles.
– Test	real-world	applications.
– Comparison	with	other	approaches.
– Optimum:	Trigger	new	vulnerabilities.

22

Bozic,	Wotawa - Planning-based Security	Testing of Web	Applications

References
[1]	“OWASP	Top	Ten	Project,”	
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project.
[2]	K.	Durkota and	V.	Lisy:	Computing	Optimal	Policies	for	Attack	Graphs	with	Action	
Failures	and	Costs.	In:	7th	European	Starting	AI	Researcher	Symposium	(STAIRS’14),	2014.
[3]	M.	Backes,	J.	Hoffmann,	R.	Kunnemann,	P.	Speicher	and	M.	Steinmetz:	Simulated	
Penetration	Testing	and	Mitigation	Analysis.	In:	CoRR abs/1705.05088	(2017),	2017.
[4]	S.	J.	Russell	and	P.	Norvig:	Artificial	Intelligence:	A	Modern	Approach.
In:	Prentice	Hall,	1995.
[5]	"Metric-FF,"	http://fai.cs.uni-saarland.de/hoffmann/metric-ff.html.
[6]	"Fast	Downward,"	http://www.fast-downward.org/.
[7]	”LPG,"	http://lpg.unibs.it/lpg/.
[8]	“JavaGP,”	http://emplan.sourceforge.net/.	
[9]	“Apache	HttpComponents - HttpClient,”	https://hc.apache.org/httpcomponents-client-
ga/.
[10]	“jsoup:	Java	HTML	Parser,”	https://jsoup.org/.	
[11]	“OWASP	Mutillidae 2	Project,”	
https://www.owasp.org/index.php/OWASP_Mutillidae_2_Project

23

Bozic,	Wotawa - Planning-based Security	Testing of Web	Applications

THANK	YOU	!

24

